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MATHEMATICS AND THE 
PHYSICAL WORLD 

MATHEMATICS can be described as a study of 
abstractions and idealizations. The concept of a 

number is abstr .acted from experience in the following 
way . If we have a stone, and we are then given another 
stone, we have something we recognize as independent 
of when or where this happens-what we have learnt to 
describe as two stones; and if we have a stick and are then 
given another stick we always have what we call two 
sticks. It is a matter of experience that there is something 
common to the similar experiments with objects of dif­
ferent kinds. And from this the mathematician has ab­
stracted the idea of a number two, and an operation of 
addition ( one plus one equals two) , without reference to 
stones, or sticks, or any other objects. A good deal of 
thought has been given to the development of a self­
.consistent theory of number based on the simplest pos­
sible abstract postulates, initially inspired by experiences 
such as I have described. 

The straight line with no thickness, intersecting a 
second straight line in a point of no size, is another ab­
straction from experience, which we meet in Euclidean 
geometry. An object with a finite mass but no size-a 
point mass-is a useful abstract concept, an idealization of 
a real particle of matter, which is introduced in mechanics 
to permit greater precision in the logical development 
of the theory of how material objects move about when 
subjected to forces . 

The purpose of such processes of abstraction and 
idealization is always to make possible rigorously logical 
deductions about numbers, or points and lines, or par­
ticles of matter. The need for conciseness in expression, 
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as well as for preciseness of concept, has been felt more 
and more as the subject has developed, and specialized 
notations have arisen, quite naturally at every stage, to 
such an extent that a modern mathematical paper often 
appears quite incomprehensible to anyone who is not 
a mathematical specialist. The advantages of a compact 
notation are unmistakable if you think how much easier 
it is to write, in symbols, ,J(x2 +1) than it is to say, every 
time it occurs: the number obtained from the number 
you first thought of by multiplying it by itself, adding . 
one to the product, and then working out the number 
which, when multiplied by itself, will give that sum. 
Mathematics, then, has been compelled to develop its 
own language, which is very difficult to translate into 
ordinary English; and which is essentially a written 
language, as it is in danger of losing some of its precise­
ness if conveyed by speech alone. The language of 
mathematics can express in a page of well-chosen words 
and symbols a sequence of ideas which it would take 
many pages to describe in ordinary words alone. It is a 
language with a beauty of its own; it can convey (from 
one mathematician to another) an elegance in a gradual 
unfolding of ideas which would be lost in translation into 
any other medium. 

The habitual use by the mathematician of a special 
language, and that a written language, makes it diffi­
cult for him to talk about his work in any detail to an 
audience who are not specialists in his own field. And yet 
the great French mathematician of the eighteenth cen­
tury, Lagrange, maintained that a mathematician has not 
thoroughly understood his own work unless he is able to 
explain its significance effectively to the first man he meets 
in the street. Before I submit to something in the nature 
of a Lagrangian test, I should like to say a little more 
about mathematics in general, and about applied mathe-
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matics in particular. The subject of Applied Mathematics 
has recently received new recognition in this College in 
the creation of the Chair of which I have the honour to 
be the first occupant. It is more important, I feel, on this 
occasion, that I should try to convey to you something of 
the outlook of an applied mathematician, his approach to 
mathematics and to the scientific description of the real 
world, and what he can hope to achieve by the use of his 
special skills, than that I should speak exclusively about 
the particular physical problems which have been my 
especial interest. I shall mention such specific problems, 
but not for their intrinsic interest alone; rather, because 
I can best illustrate in that way the attitude a mathema­
tician must adopt in treating problems which arise in the 
physical world, and demonstrate the significance which 
can be attached to the results of his research. 

It is implicit in these remarks that there is more than 
one kind of mathematician, classified as pure or applied 
according to whether his interest is in abstractions for 
their own sake, or in mathematical idealizations in rela­
tion to the physical experiments which give rise to them; 
within these broad categories, there are represented a 
wide range of different philosophies. The primary classi­
fication is of men, by their attitude towards the physical 
world, rather than of mathematical systems, by their 
content. 

We have first what we might call the extremely pure 
mathematician, who is fascinated by his subject as a 
creative art and requires no other justification for pur­
suing his life's work. He is concerned entirely with the 
intrinsic beauty of his theorems, and the significance of 
his results in relation to other purely mathematical ideas. 
He neither takes inspiration from the physical world, 
nor is he interested in the significance of his discoveries 
in relation to the physical world; and he may even glory 
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in their uselessness, like the extremely pure mathema­
tician in the story, who shot himself when he learned 
that one of his beautiful theorems in four-dimensional 
geometry was being used in a study of the chemistry 
of brewing. 

The late Professor G. H. Hardy, a founder of the 
modern Cambridge school of rigorous analysis and un­
doubtedly one of the great mathematicians of this cen­
tury, in his book A Mathematician's Apology justifies his 
life as a mathematician by his having created something 
worth creating in mathematics, having 'added something 
to knowledge, and helped others to add more'. He does 
not subscribe to the view that uselessness is itself meri­
torious, but it is significant that he thinks it worth while 
to add: 

I have never done anything 'useful'. No discovery of mine 
has made, or is likely to make, directly or indirectly, for good 
or ill, the least difference to the amenity of the world . I have 
helped to train other mathematicians, but mathematicians of the 
same kind as myself, and their work has been, so far at any rate 
as I have helped them to it, as useless as my own. 

The thesis that all profound mathematical thought must 
be completely isolated from any real associations is, I 
wish to emphasize, a purism. It is, however, sometimes 
put forward as the only view any self-respecting mathe­
matician could possibly hold, and this has contributed to 
a common misunderstanding about the nature of applied 
mathematics, which I shall return to in a moment . 

Although there are a few mathematicians who appear 
to have lost sight of the origin of mathematical thought in 
abstraction from experience, there are many more, whose 
interest still lies in methods of analysis rather than in 
physical science, whose greatest work has been the resolu­
tion of some purely mathematical difficulties arising as 
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a result of the study of natural phenomena. Fourier's 
study of the properties of the trigonometric series which 
are named after him was inspired by their natural occur­
rence in the exact description of the flow of heat from the 
hotter to the colder parts of a solid body. 'The profound 
study of nature', he declared, 'is the most fruitful source 

· of mathematical discoveries.' Henri Poincare endorsed 
this view, and his researches on a very wide range of 
mathematical topics lend considerable support to it. 
Poincare, who died in 1912 at the height of his creative 
period, has been described as the last universalist, for he 
was the last great mathematician who took practically the 
whole of mathematics within his province and produced 
an immense amount of new mathematics of all kinds. 
His early work on differential equations, equations which 
arise in the analysis of physical situations, is characteris­
tic of one who follows Fourier's philosophy. 

We have yet to consider the mathematician who takes 
his main inspiration from the observation of natural 
phenomena-from physical, chemical, and occasionally 
biological science-and who seeks to draw conclusions 
fro:m the results of one experiment regarding what will 
happen in another, for whom the mathematical method is 
important only in so far as it is powerful in achieving this 
end; that is the applied mathematician. A real physical 
situation often needs drastic simplification before it can 
be represented by means of mathematical relationships 
between simply defined physical quantities; but the 
equations which the applied mathematician constructs 
as a basis for logical extension, however much they are 
idealized, are essentially physically significant equations. 
If he is able to deduce certain consequences from his 
formulation of a natural problem in a set of equations, he 
is mainly interested in those which are capable of physi­
cal interpretation. 
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Poincare's ability to contribute work of the highest 
quality to all the known branches, both of pure analysis 
and of theoretical physics, is not likely to be seen again. 
For mathematics has expanded, and is expanding, to 
such a degree that no one man could now have a com­
prehensive knowledge of all modern developments, or 
make a significant original contribution to more than two 
or three main fields of research. The need for specializa­
tion does not present any great problem to the pure 
mathematician, for he has no objection to working in a 
restricted field, such as the geometry of spaces of many 
dimensions, where his own contribution will be related 
only to the work of other geometers-no matter how far­
reaching are modern developments in the theory of dif­
ferential equations or astronomy . But the impossibility 
of fully comprehending the whole range of mathematical 
thought does, to some extent, affect the outlook of the 
applied mathematician . 

He could not now, even if he wished to, claim to be an 
expert in all known mathematical techniques, ready to 
use any of them at a moment's notice, to solve what­
ever problem the experimentalist might bring along to 
him . Yet the term applied mathematician is often, quite 
erroneously, taken to mean a technician of that kind, 
a tame mathematician who can solve any awkward 
differential equation that arises in the interpretation of 
experiments, or even work out the results if the calcula­
tions become too heavy. I must do my best to dispel this 
frequent misrepresentation of the nature of applied 
mathematics. 

It is true that all mathematical developments, however 
they may have arisen, must be regarded as potentially 
useful as a means of describing natural phenomena. An 
applied mathematician may find that someone else has 
developed-either as a piece of pure mathematics or as 
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part of a physical theory-a mathematical structure 
which is ideally suited to the description of some 
natural process. For example, Einstein found in Ricci 's 
absolute differential calculus-or the tensor calculus, 
developed purely as differential geometry-exactly what 
he needed for the formulation of the theory of general 
relativity. On the other hand it may be necessary, not 
simply to adapt someone else's mathematics, but to 
create an entirely new mathematical structure in order 
to represent the essential features of a newly observed 
physical phenomenon. Now it seems to be part of the 
misunderstanding about the scope of the subject, closely 
related to the purist's view that mathematics-for-its-own­
sake is all that matters, that there could be no artistic 
value in mathematics inspired by such mundane things 
as the motion of the planets, the flow of a glacier, the 
northern lights, or conditions inside the sun; no beauty 
in mathematics which leads to a better understanding 
of the structure of a molecule, to greater facility in fore­
casting the weather, or to the development of a new pro­
cess of textile spinning. It would indeed be surprising if 
the inspiration for creative work in any medium could 
come only from the work of other artists, and from no 
external source; in mathematics, at any rate, it is quite 
false to suppose that this is so. The creation of new 
physical theory can cause great emotional satisfaction 
to the author, and its perfected formulation is worthy of 
being recorded in the literature to be read with pleasure 
by the future generations of mathematicians, irrespective 
of its immediate usefulness. Professor C. A. Coulson, in 
his inaugural lecture in Oxford under the title The 
Spirit of Applied Mathematics, epitomized his subject in 
a single sentence: 

Applied mathematics is an intellectual adventure in which 
are combined creative imagination and authentic canons of 
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beauty and fitness; they combine to give insight into the nature 
of the world of which we ourselves, and our minds, are part. 

The name applied mathematics is no doubt itself respon­
sible for some misunderstanding, and it is to be re­
gretted that the accepted synonym natural philosophy 
is not more widely used; it is a subject where mathemati­
cal methods are subsidiary to scientific implications. 

An essential property of the language of mathematics 
is that it is self-consistent. In pure mathematics, the 
fundamental postulates-the universally accepted pre­
misses from which logical deductions are made-are so 
well defined that there is always a unique correct answer 
to any problem, as in simple arithmetic, no matter what 
method of procedure has been adopted in the proof. For 
example, in Euclidean geometry, it is readily proved that 
the sum of the three angles of any triangle is equal to 
two right angles; and if, in some problem in Euclidean 
geometry we evaluate the angles of a triangle and find 
that they add up to more, or less, than two right angles, 
then we have made a mistake. We have no doubts about it. 

On the other hand, let us examine what conclusions 
are to be drawn if we arrive at an unexpected result in a 
problem in applied mathematics; an example will make 
the situation clear. By means of the Newtonian theory of 
gravitation, based on the assumption of a simple natural 
law that bodies are attracted to each other by a force 
directly proportional to each of their masses and in­
versely proportional to the square of the distance be­
tween them, the positions of the planets at future times 
may be calculated from their known positions now and 
in the past. According to this theory, the planets move 
round the sun in orbits which are approximately ellipses, 
and which would be exactly ellipses if it were not for the 
small disturbing influence of one planet on the motion of 
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another. If there is disagreement between the predicted 
and observed motion of a planet, the cause of the dis­
crepancy is not immediately obvious. We may conclude 
that either 

(i) there has been an error of observation, or 
(ii) we have made a mistake in interpreting the 

theory, perhaps by an error in algebra or arithmetic, 
but perhaps through ignorance of the existence of all 
the other planets whose disturbing influence should 
have been taken into account, or 

(iii) the fundamental assumptions on which the 
theory is based require modification in the real solar 
system. 

We must in fact be prepared to relinquish the theory, as 
one providing an inadequate approximation to the truth, 
if we cannot otherwise resolve the difficulty. 

There are two famous instances where precisely the 
disagreement I have outlined has arisen in the study of 
planetary motion, when the possibilities of observational 
error of the necessary order of magnitude and of mis­
takes in calculation could be decisively ruled out. In 
the first case it was found that a slight irregularity in 
the motion of the distant planet Uran us could be ac­
counted for if a hitherto unobserved planet were present 
in a more distant orbit. Such a planet, afterwards called 
Neptune, was observed in 1846 in just the position pre­
dicted by Leverrier in France and by Adams in this 
country. Newton's theory of gravitation, together with 
the elaborate astronomical predictions based on it, was 
left unchallenged as an accurate description of the motion 
of real bodies. 

Later, Leverrier made a similar attempt to explain an 
anomaly in the motion of Mercury, the planet moving 
comparatively rapidly in an elongated orbit close to the 
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sun with a period of revolution about the sun of only 
eighty-eight days. The calculated perturbations due to 
the other planets explained an angular advance in the 
position at which the planet came nearest to the sun 
at the rate of 8' 52" per century; the advance observed 
was at the rate of 9' 34". The name Vulcan was given to 
a new planet moving in an orbit even nearer to the sun 
than Mercury, whose presence would explain the excess 
of about 42 seconds of arc which could not be accounted 
for by errors of observation or calculation. But no such 
planet has ever been observed. When Einstein's general 
theory of relativity provided an alternative explanation 
of the motion of Mercury, without invoking the existence 
of an unobservable planet, it was realized that Newton's 
theory of gravitation, as an exact theory for the faster­
moving bodies at any rate, must be abandoned in its 
favour. The two theories agree, within the limits of 
observational error, so far as the rest of the solar system 
is concerned. 

In such a way as this, an applied mathematical develop­
ment of some basic physical hypothesis may change its 
status, as theoretical physics, overnight. It may continue 
to provide a rough approximation to, although it can no 
longer rank as a completely satisfactory explanation of, 
the natural phenomena to which it relates; in other cir­
cumstances it may have to be regarded as altogether un­
tenable, as theoretical physics, because of conflicting 
experimental evidence. When this happens, the mathe­
matician may not feel obliged to abandon completely his 
research along the lines discredited by the physicist. In 
exploring theoretical simplifications or generalizations of 
what is currently held to represent physical reality, he 
is at liberty to allow his imagination freer rein than the 
physicist, who must pay due regard to the details of what 
he actually observes in his experiments. 
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Mutually incompatible alternative theories are often 
developed simultaneously, and it is not always clear, un­
til several possible consequences have been investigated 
experimentally, which analysis of the situation is the 
most realistic. It is well known that Newton built up a 
corpuscular emission theory of light-the theory of light 
rays regarded as the paths of definite particles of light­
and that this was later rejected by physicists in favour 
of the wave theory associated with the name of Huygens, 
as a result of crucial experiments on optical interference. 
But in some of his work, Newton considered light to be 
a wave phenomenon, and showed a characteristic caution 
in giving no clear indication which theory he considered 
really to represent the truth. The two apparently in­
compatible theories have been pursued simultaneously, 
notwithstanding that one or other of them has from time 
to time been out of fashion as theoretical physics; this 
independent, imaginative attitude has had its reward in 
the integration of the two points of view in Einstein's 
relativistic light-quantum theory, an essential constituent 
of the modern wave-mechanics of matter and radiation. 

I should like to illustrate the procedure which is likely 
to be followed in a mathematical approach to a new 
physical situation by discussing some general questions 
which I have myself been occupied with; I refer to the 
study of the deformation or flow of a solid or a liquid 
when it is subjected to forces tending to change its 
shape. 

Many of the materials of industrial importance today 
are new materials-new alloys, plastics of all kinds, syn­
thetic fibres for textiles-whose properties are different 
from those of the mainly natural products which have, 
until recently, been almost exclusively used for all our 
needs. It is of immense practical importance that we 
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should be able to describe the mechanical response to 
stress of these unfamiliar materials in precise terms; such 
a description can help us to make an advance assessment 
of their potential new uses. The suitability of the old, 
familiar materials, for the purposes for which they are 
habitually used, has become established as a result · of 
experience over a long period: stone and brick for build­
ing houses, rubber for electrical insulation. The ultimate 
test for a new material is a practical trial preceded by 
laboratory experiments. 

In the absence of any comprehensive theory of the 
mechanical response of solids and liquids to applied 
stresses, laboratory experiments have often been of a 
purely empirical nature, often following an industrial or 
laboratory practice which has been found appropriate 
for a different material with simpler properties. If in­
dustrial tests have by custom been purely subjective, 
and the properties usually assessed are somewhat ill­
defined, there is no sound basis for laboratory tests at all. 
This difficulty is acute, for example, in the cheese in­
dustry. The mechanical properties of cheese are very 
important commercially, and the standard method of 
testing a cheese for ripeness is a partly subjective assess­
ment of them: the cheese-maker observes the impression 
made by pushing his thumb into the cheese, and at the 
same time infers from the feel of it whether the cheese 
is ready for eating. This subjective assessment is more 
reliable than any single laboratory test that has yet been 
devised to replace it; it is not known exactly what me­
chanical property can be correlated with the experienced 
craftsman's judgment, or even what all the complicated 
mechanical properties of cheese actually are. 

There are one or two simple types of mechanical be­
haviour which have been exhaustively studied. A bar of 
metal under tension extends by a very small proportion 
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of its length: a pull of 10 tons weight per square inch 
of cross-section produces in steel an elongation of less 
than one-tenth of 1 per cent . A far-reaching mathematical 
theory of behaviour of this type has been built up during 
the past three centuries, based on the simplifying assump­
tion, proposed as an idealization from experiment in 
1678 by Robert Hooke, that all extensions, or strains, are 
strictly proportional to the loads, or stresses, which pro­
duce them. The theory has provided a close approxima­
tion to the behaviour of many real materials; many 
important constructional materials obey Hooke's law of 
proportionality, and the engineer can use this classical 
elasticity theory to calculate the safe load for a steel 
girder or a masonry dam. But it is easy to see that it will 
not provide a very good approximation for some other 
solids. For instance, when rubber is loaded, the response 
to the stress is of a different order of magnitude alto­
gether; a tension of I oo pounds weight per square inch 
of cross-section can stretch a specimen to three or four 
times its original length. A simple experiment also 
shows that the extension is not simply proportional to the 
load. 

Another idealization of mechanical behaviour, which 
provides a very close approximation to that of ordinary 
mobile liquids like water and mercury is embodied in 
what is known as Newton's viscosity law. The basic 
assumption is that if one had two large horizontal flat 
plates, close together with liquid in between, the force 
required to pull the plates apart, sideways, parallel to 
themselves, would be in direct proportion to the relative 
speed of pulling-due to internal friction, or viscosity, in 
the liquid. A mathematical theory of the behaviour of 
this kind of liquid when flowing in different ways has 
been built up gradually since the time of Newton; it 
accounts satisfactorily for the flow properties of honey , 
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glycerine, thick oils, and many other viscous liquids. 
But the flow properties of colloidal suspensions of small 
particles in a liquid, and solutions obtained by dissolving 
in a liquid a solid known to have very large molecules, 
are not accounted for by the classical theory. Long mole­
cules in the form of a chain of many simple molecules 
united chemically-linear polymers as they are called­
are present in natural materials such as rubber and cel­
lulose from plants and proteins in animal products, and 
are now common in the synthesized materials known 
collectively as plastics. The increasing commercial use 
of these, sometimes in solution, has attracted attention 
to the existence of unexpected mechanical properties of 
many kinds. 

If we confine attention to materials which do not 
appreciably alter their size if they are subjected to 
reasonably small forces (that is, if we exclude gaseous 
materials), all these can conveniently be divided into two 
mutually exclusive categories: we call them solids if they 
do not change their shape continually when subjected 
to sufficiently small stresses; and liquids if they do change 
their shape continually when subjected to forces, how­
ever small, maintained for a finite time. 1 Broadly speak­
ing, the work done in deforming a solid is mostly stored 
as internal potential energy, available to make the solid 
spring back into its initial configuration at a later time; 
the work done in deforming a liquid is mostly done 
against internal friction and dissipated as heat. In the 
majority of real materials, however, a certain amount of 
elastic potential energy is stored in the material, either 
transiently or semi-permanently, and a certain amount of 
the mechanical work, needed to change the shape of the 
body, is lost in the form of heat due to internal friction. 

' The rheological definitions of solid and liquid differ from those found 
convenient in physical chemistry. 
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In general, a material chosen at random will have some 
of the properties ordinarily associated with solids, and 
some of the properties of simple liquids; and when it 
does not approximate to either of the simple extreme 
cases, it is then that its properties can prove particularly 
difficult to formulate with any precision. 

Sealing wax responds to stresses applied quickly just 
as a hard solid, even to the extent of showing brittle 
fracture, but it must be classed as a liquid because it 
flows, with a permanent change of shape, even under its 
own weight. Certain jellies have the appearance of a solid, 
rather like a table jelly, and are undoubtedly to be classed 
as solids by the definition; yet if they are disturbed by a 
momentary shaking they may show for some seconds, or 
minutes, or hours, all the appearance and properties of a 
mobile liquid; they are then said to be in the sol form. On 
being left to stand the material returns to the solid, or gel, 
form. Such a reversible sol-gel transformation has been 
given a special name-thixotropy. There appears to have 
been at one time a tendency to pronounce such magic 
words as 'Thixotropy!', 'Spinnbarkeit!', or 'Rheopexy!' 
when any quite unaccountable mode of mechanical be­
haviour was observed in the laboratory, but they were of 
no avail in opening the door to an understanding of the 
phenomena, and appear to have gone out of fashion. 

The elasticity of sealing wax is different only in degree 
from the elasticity readily observable in certain dilute 
polymer solutions: these have the appearance of ordinary 
mobile liquids, but if air bubbles are present when a 
bottle of the liquid is jerked, the bubbles are seen to 
oscillate rather as they would in a disturbed jelly. Inter­
mediate in degree between the elasticity of sealing wax 
and of a dilute polymer solution, there are liquids which 
are mobile enough for any surface irregularities to be 
smoothed out by flow under the liquid's own weight 
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within a few hours of being put in a beaker, and yet 
elastic to the extent that a drop of the liquid can be 
bounced on the floor like a rubber ball, with no visible 
flattening of the surface after it has struck the floor. The 
liquid has a very different response to slow and to rapid 
movements. A characteristic feature of the behaviour of 
liquids with elasticity is that when they are stirred with 
a rod they tend to climb up the rod rather than to be 
thrown off it by centrifugal force as water is. Any animal 
which finds itself in a shallow pool of liquid of this kind 
can very soon become hopelessly entangled if it moves 
its limbs rapidly in an effort to get out, and such liquids 
are sold commercially for catching mice. 

All these rather remarkable phenomena are food for 
serious thought for the mathematician. There is a clear 
need for a comprehensive theoretical discussion of 
mechanical response to stresses, which must include, 
within its scope, all the types of behaviour which are 
known to be possible. I shall now speak of the general 
problems which are involved in this requirement, from 
the mathematician's point of view, with some indication 
of how far they have been resolved. 

The first general problem is that of relating the prop­
erties of a small sample of a solid or liquid with the 
properties of its constituent molecules. In the case of a 
crystalline solid, such as a metal, where the atoms are 
known to be in an ordered array, it is possible to relate 
the elastic constants for a single crystal with the lattice 
spacings; and the occurrence of slow plastic flow, result­
ing in permanent deformation when the material yields 
under a critical load, can be explained in terms of dis­
locations in the array of atoms, each atom moving spon­
taneously so as to reduce slightly the internal potential 
energy of the crystal. But in the case of amorphous solids 
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and liquids, where there is no long-range order among 
the constituent molecules, and in which there occur con­
tinual changes in the relative positions of a molecule and 
its neighbours, there is as yet no completely satisfactory 
statistical-mechanical theory to relate molecular and 
macroscopic properties. There is, however, a notable ex­
ception: a structural theory of rubber and rubber-like 
materials, which explains the observed mechanical prop­
erties of vulcanized rubber with some accuracy, has been 
based on the following idealized picture of the molecular 
arrangement in rubber. 

The rubber molecule is to be envisaged as a long-chain 
polymer in which the constituent small molecules have 
freedom of relative movement, subject to certain restric­
tions, rather as the links of an ordinary chain can move, 
so as to give the molecular chain some flexibility. We 
must think of the chain in a continual state of agitation, 
of a degree depending on the temperature. In the pro­
cess of vulcanization of the rubber one or two points of 
each chain are chemically bonded to points of neighbour­
ing molecular chains, and the free lengths of all the 
chains between junction points with other chains are of 
all possible shapes and sizes. The mathematical theory 
of rubber elasticity is a statistical theory, dealing with 
the free lengths of chain in a small finite piece of rubber, 
grouped according to their configurations at any instant. 
The theory explains not only the magnitude of the 
stretch of a piece of rubber, and its non-linear variation 
with the load, but also why, when we suddenly stretch 
a piece of rubber, it feels noticeably warmer, and when 
we suddenly release a specimen from the stretched posi­
tion it feels, for a moment, cooler than its surroundings. 
The idealized molecular picture on which the statistical 
theory has been based is admittedly not a complete 
picture of all that is known about the constitution of 
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rubber, but the main features of the molecular arrange­
ments are taken into account and the main characteristics 
of the macroscopic rubber are deduced from them. The 
selection of what seem to be the essential features of a 
complicated physical situation is always required of the 
applied mathematician; without such selection he would 
usually find his real problems were represented by equa­
tions so complex that he would not be in a position to 
draw conclusions from them. 

A less ambitious structural theory of the flow ofliquids, 
relating macroscopic properties with those of microscopic 
constituents, in simple cases, instead of directly with 
molecular arrangements, has provided a partial explana­
tion of certain non-Newtonian flow characteristics of 
real viscous liquids. The increase in viscosity when 
small solid particles are present in suspension in a liquid 
was first calculated by Einstein at the beginning of this 
century. More recently an explanation has been given, 
in terms of the elastic energy of suspended colloidal 
particles in a two-component system, of such effects as 
the tendency of elastic liquids to climb up the rod which 
stirs them. The suspended particles may be microscopic 
elastic solid particles (for example, finely divided rubber), 
or minute droplets of one of the two liquid components 
of an emulsion, suspended without dissolving in the 
other (liquid) component. If we think of the long, poly­
mer molecules of a solid dissolved in a liquid, which may 
be coiled up rather like an irregular spiral spring en­
tangled within its own coils, as having the nature of 
sub-microscopic elastic particles, then we may think of 
the microscopic theory of liquid elasticity as providing 
the beginnings of a molecular theory for polymer solu­
tions. Certainly, some polymer solutions have the type 
of mechanical properties predicted for liquids containing 
elastic particles, although no precise quantitative rela-

MATHEMATICS AND THE PHYSICAL WORLD 21 

tionship between theory and experiment has yet been 
established. 

Let us pause for a moment to consider the significance 
of all this. In these days of synthetic chemicals, it is, to a 
limited extent, possible to make new substances, particu­
larly polymers, with 'tailor-made' molecules, built up in a 
prescribed manner from simpler molecules by controlled 
chemical reactions. An industrial requirement may be for 
a material which must have, among other things, certain 
quite complicated mechanical properties in bulk, either 
as a solid or in solution in a suitable solvent; for example, 
there may be a demand for a new substitute for rub­
ber, or a substitute for wool. Without some correlation 
-however rudimentary-between molecular properties 
and macroscopic mechanical properties, such require­
ments could only be satisfied fortuitously; with a com­
plete correlation it would be possible in principle to fulfil 
a specific requirement as a result of a systematic series of 
trials. 

The second general problem for the mathematician is 
the study of the deformation and flow of a solid or liquid 
regarded as sufficiently represented by a homogeneous, 
continuous material, that is the relation between the be­
haviour of the material in bulk with that known (from 
simple experiments or structural theory) to be character­
istic of a single macroscopic element of the material. 
Theoretical results which may ultimately be of use to 
the engineer-who may, for example, be concerned to 
know whether new materials will be potentially useful 
in certain manufacturing processes-must deal with flow 
under prescribed external conditions such as those of the 
rolling mill or the extrusion jet. 

To take a simple example, it may be of interest to cal­
culate the pressure required to pump a thick paste or 



22 MATHEMATICS AND THE PHYSICAL WORLD 

slurry through a pipe. The question might first have 
arisen as one aspect of an engineering problem: it may 
be necessary to know ultimately whether it will be 
more economical to pump newly mixed concrete con­
tinuously through pipes, or to move it in batches by 
truck, in planning some large-scale constructional work. 
The engineer may require only a single numerical an­
swer, probably only an approximate one, to reach his 
decision in a particular case. But the flow problem alone 
may require an elaborate theoretical analysis if the 
material to be pumped has physical properties which are 
not particularly simple. In this case the results are likely 
to be of general interest, and the mathematician embarks 
on a determination of the power required to force a 
material with both elastic and viscous properties at a 
constant rate through-in the first instance-a uni­
form, straight, horizontal pipe with a circular section. 
If he succeeds, he may be able to go farther, and de­
scribe what happens when the pipe is not uniform, not 
straight, not horizontal, and possibly not even circular 
in section. 

Some of these modifications may prove too complex 
for a general analysis. In that case, if the need arises in a 
particular instance, it may be necessary to resort to (per­
haps laborious) numerical calculations, to be done by a 
team of computers with calculating machines. A purely 
numerical calculation makes use of the measured dimen­
sions of the equipment and the measured constants of a 
particular material at the outset, and gives a numerical 
result which would in general be quite irrelevant if the 
equipment or the material were changed. The result is 
of no general interest. The mathematician will not be con­
tent until he has succeeded in deriving a general result 
for any equipment of a certain type, and any material 
of a certain type, so that the answer to any specific prob-
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lem can be deduced from it by substituting actual sizes 
and material constants in the general formulae. 

Let us see how the mathematician can hope to describe 
the flow in bulk of a new type of material. The kind of 
material he has in mind may have been observed to have 
certain properties in the laboratory, or it may be an 
idealized liquid corresponding to certain arrangements 
of molecules or microscopic particles, with macroscopic 
properties obtained by inference from the properties of 
its constituents. He must first formulate these properties 
in a set of equations: the equations of state of the material. 
These must relate geometrical quantities defining the 
shape of a typical small piece of the material, the forces 
acting upon it, and the temperature, all considered to be 
varying with the time. The equations are analogous to 
the well known equation of state for an ideal gas : the 
volume multiplied by the pressure is a constant times the 
absolute temperature; but they are usually derived as 
a set of six or more differential equations, instead of a 
single algebraic equation. They must not only represent 
the properties which have been observed or calculated for 
an arbitrary small portion of the material, under the 
conditions appropriate to the first observations or the 
calculations, but must also define the properties under 
all possible conditions-all types of deformation and all 
types of applied forces-consistently with the known 
properties. 

Even this is not all we require of these equations: they 
must be so constructed that they really do represent 
physical properties of the material, and nothing else. It is 
very easy, as it happens, to write down equations which 
define the behaviour of a material under all conditions, 
but which depend on the physical properties of the 
material and also on the set of symbols the mathemati­
cian has chosen-his frame of reference. This means the 
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equations are not self-consistent physically (although 
they may satisfy all the purely mathematical rules for 
compatibility) and could have no true physical signifi­
cance. For example, they might be a set of equations 
proposed for describing the properties of the metal of 
which a spring balance is made, and yet they may pre­
dict a different reading of the spring balance when ex­
tended by a pound weight according to whether the 
balance is at rest or moving with uniform velocity. Such 
inconsistencies must be avoided, and only certain forms 
of the equations of state are admissible as having possible 
physical significance with complete generality. 

There we have a difficulty in formulating a physical 
concept in exact language-the language of mathematics. 
It is just such processes of formulation which give applied 
mathematics its distinctive character; they distinguish it 
from pure mathematics and from physics. There is no 
routine procedure for constructing the basic equations 
for a mathematical theory from the results of suitably 
designed experiments; each new physical situation must 
be considered on its merits. Completely new mathematics, 
new types of abstract quantity, and new types of re­
lationship between such abstract quantities, can arise 
naturally in the process of formulation. Their introduc­
tion may complicate the interpretation of the conse­
quences of the original physical ideas; but the obligation 
to interpret his results in physical language is undoubtedly 
on the mathematician, in any case, whatever mathematical 
method he has used. Provided he ultimately fulfils that 
duty there is no possible disadvantage in the complexity 
or subtlety of his notation, and he is quite at liberty to 
extend his special language in whatever way he chooses, 
for the purpose of examining all the implications of the 
basic concepts. 

There are as yet many types of material for which the 
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experimental data are too meagre for equations of state 
to be determined. This deficiency can be remedied by 
making more physical experiments, carefully designed 
to provide the missing information; only the mathema­
tician can say precisely what information he requires as 
a basis for a theory, so he must play a part in the design 
of the experiments. 

With the representation of the available physical data 
about a solid or liquid in a self-consistent set of equations 
of state, the main task of the applied mathematician is 
over. He is in a position to reduce any physical prob­
lem concerning the deformation or flow of the material 
in bulk to a set of differential equations with certain 
boundary conditions-in fact to a purely mathematical 
problem. 

I do not wish to belittle the difficulty of solving differ­
ential equations. There may or may not be known an 
analytic method of solving the particular equations arrived 
at in the course of a physical problem. They are more 
likely than not to be equations which no pure mathema­
tician has thought of inventing for their own sakes; the 
applied mathematician must then seek an analytic solu­
tion himself, perhaps simplifying the conditions of the 
physical problem he is studying until he can solve the 
corresponding equations and find an answer which he 
can translate into the ordinary language of physics. 

The possibility of modifying the precise conditions 
under which a material is considered to be deformed gives 
the mathematician a good deal of choice in the develop­
ment of a theory of flow in bulk. If the material is one 
whose properties are comparatively simple, such as the 
prototypes of Hooke and of Newton, on which the clas­
sical theories of elasticity in solids and of viscosity in 
liquids have been based, it is possible to select many 
sets of conditions which lead to tractable differential 
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equations. There are then placed on record a sufficient 
number of examples of the mode of deformation for 
the behaviour of the material under somewhat more 
complicated conditions to be inferred by analogy. 

The freedom of choice of boundary conditions, exer­
cised to make the mathematics tractable, is of even more 
importance when we come to a material whose properties 
cannot be represented by simple equations at all. Here 
it may determine not only the line of theoretical develop­
ment but also the experimental research undertaken on 
available materials; this is happening in the current work 
on elasticity in liquids. The mathematician is in a position 
to say to the physicist: 'If you examine the flow .in an 
apparatus of this kind, I shall be able to say whether or 
not the liquid you are dealing with has the kind of elastic 
property you suspect, but if you use that kind of appara­
tus, I am afraid I shall not be able to help you in inter­
preting the results of your experiments because of the 
complexity of the equations which represent that type of 
motion.' The mathematician plays a leading part, in fact 
he must take some of the initiative, in the design and 
interpretation of experiments in this field of scientific 
research. 

The role which the mathematician can play in research 
in collaboration with the physicist and the chemist must 
be borne in mind in relation to the type of mathemati­
cal education we offer in schools and universities. The 
balanced association of mathematical methods and scienti.., 
fie inference, which is the essence of applied mathematics, 
should be introduced early in the teaching of mathematics 
if we are to train the student to use his knowledge in the 
pursuit of scientific truth. He must, of course, become 
acquainted with the standard methods of pure mathe­
matics, with geometry and analysis; and we can try to 
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bring it about that he learns from these something of the 
power and the beauty of mathematics itself. But com­
petence to use purely mathematical techniques will not 
alone make him a competent applied mathematician. To 
make full use of his mathematical training he will require 
also practice in the appreciation of physical situations, in 
selecting the salient features of a problem-in mechanics, 
or electricity, or hydromechanics-and expressing their 
essence in the language of mathematics. His pure mathe­
matics will help him to deduce the mathematical con­
sequences of his equations, but it will not teach him how 
to interpret his deductions in the language of physics. 
Without any appreciation of physical phenomena, the 
mathematician will be unable to take any initiative in the 
planning and interpretation of the crucial observations 
of the physical world on which his advice may be sought . 
What is more regrettable is that he will fail to catch an 
occasional mathematical inspiration from the wonders 
of nature which, on analysis, are often so beautiful in 
their simplicity. 

The need for physical insight as well as mathematical 
technique makes applied mathematics a more difficult 
subject of study than mathematics-for-its-own sake. The 
power to translate scientific facts into mathematical equa­
tions, and facility in appreciating the physical significance 
of their mathematical implications are not something the 
student can acquire quickly if he has been taught only 
pure mathematics, physics and chemistry, as separate 
compartments of knowledge. 

According to a definition of mathematics given by 
Bertrand Russell, a mathematician is one who does not 
know what he is talking about, nor whether what he is 
saying is true; and, one might add, he doesn't care 
either. You may be convinced, after hearing this lecture 
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that this is indeed the case. But if, after hearing me, you 
are prepared to admit the existence of a species of mathe­
matician who, at least cares whether what he is saying is 
relevant to the real world, then I have achieved some­
thing of my purpose. 
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