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THE MATHEMATICS OF PATTERNS AND 
ARRANGEMENTS 

I 

The first Professor of Mathematics in this College was 
A. R. Richardson, who was appointed Head of the 
Department of Mathematics in 1920 and held the post 
until 1940, when he was obliged to retire on account of 
deteriorating health. He had received severe wounds in 
the 1914-18 war, and subsequent operations had left 
him with a legacy of progressive illness. I am the only 
member of the present Department of Pure Mathematics 
who knew Richardson, and I would like to take this 
opportunity to pay tribute to him as the founder of a 
department which has always had a high reputation as a 
centre of active research in Mathematics. The research 
tradition has been most worthily fostered by his successors, 
but they would have had a harder task if the foundation 
stone had not been well and truly laid in the nineteen 
twenties. In many ways Richardson was ahead of his 
time. He lectured on Abstract Algebra to undergraduate 
classes when it was certainly not fashionable in the uni
versities of Great Britain. It has now begun to percolate 
through to A-level, and even 0-level, courses in schools. 
His early academic training was as an engineering student 
at the Royal College of Science ; I believe he made 
himself rather unpopular with the staff of the Engineering 
Department at Swansea by devising an Intermediate 
course, largely for th eir students, with seemingly new
fangled, irrelevant and abstract ideas such as Boolean 
algebra . He was elected a Fellow of the Royal Society in 
1946, and continued his researches in Pure Mathematics 
until his death in 1954. 

Because of the research tradition initiated by Richard
son and maintained so well by his successors there has 
been an impressive flow of research papers from the 
department over the years, and many distinguished 



mathematicians have worked here. The publications 
have ranged widely over the two main branches, algebra 
and analysis, of pure mathematics as it was two or three 
decades ago. In the period after the second World War 
some of the older topics were worked out and others 
have grown in upon themselves, but in compensation 
there has been an astonishing proliferation of new 
branches of pure mathematics. This intensification and 
diversification has been reflected in the research output 
and interests of the department ; the range of subjects 
has become much wider. Richardson would applaud 
the multiplicity of research seminars currently being 
held in the department which he founded. My own main 
research preoccupation for the last few years has, however, 
been in a branch of mathematics which is not algebra or 
analysis and cannot really be called one of the exciting 
new proliferations. It is in fact quite an old subject which 
has been rather quiescent for perhaps as long as a century 
or so, but which is now enjoying a great resurgence of 
interest and development, particularly outside Great 
Britain. 

It is a regrettable fact that I cannot hope personally to 
promote the study of this interesting and increasingly 
important branch of mathematics over any very sub
stantial period in this college, but it is a duty and a pleasure 
to use the opportunity afforded me by an inaugural 
lecture to make known to colleagues in other departments, 
and any other interested persons, the attractiveness, 
significance and utility of the subject in which many of 
my research interests lie. If they have research problems 
of the sort to be indicated later in this lecture, it may be 
a comfort to them to know that the mathematicians are 
not completely indifferent and are groping for unifying 
principles which may one day help to solve their problems. 
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II 

The subject is variously known as combinatorial 
analysis, or combinatorial theory, or merely as com
binatorics. The word 'combinatorial' seems to have 
emerged as descriptive of this sort of mathematics in the 
seventeenth century. A work of Leibniz, written in 
1666, when he was twenty years of age, is usually regarded 
as the genesis of the subject. This work, entitled ' Dis
sertatio de Arte Combinatoria ', is a most extraordinary 
treatise. After a synopsis of its contents in which Leibniz 
promises applications of his combinatorial art to law, 
theology, grammar, logic, music, poetry, and the mixing 
of colours, among many other topics, he defines God as an 
incorporeal substance of infinite power, and with two 
further definitions ( of substance and of infinite power), 
followed by one postulate and four axioms, · he proves in 
twenty one steps that God exists, Q.E.D. 

After this opening fanfare there follows a good deal of 
material which also cannot be considered wholly mathe
matical, but embedded in it is a table of the coefficients 
in the binomial expansion of (1 +x)n up to n=12, and 
some properties of these coefficients. He also enumerates 
the fifteen non-empty subsets of a set of four elements 
A, B, C, D, namely the elements themselves, six pairs AB, 
AC, AD, BC, BD, CD which he calls com2nations, four 
triples ABC, BCD, CDA, DAB which he calls con3nations, 
and one con4nation ABCD . His quaint notation has not 
survived. 

I think it must be admitted that the mathematical 
results given in this work of Leibniz are slight, and that 
many of the applications he writes about are trivial and 
rather fantastic. One must remember that he was a mere 
twenty years of age when this tract was published and, 
although this is not too young an age for mathematical 
genius to flower, he had not then been in contact with the 
modern mathematics of his period. He first met Huygens 
in Paris in 1672, six years after the publication of the 
com.binatorial dissertation, and that is when his real 
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mathematical education began. Although it is customary, 
but not necessarily correct, to regard pure mathematics 
as a young man's game, one does not have to regard the 
early efforts of every young mathematician as blinding 
inspirations, and indeed Leibniz subsequently referred 
to his 1666 dissertation as 'one which might have been 
written by a youth just out of the schools who was not 
yet conversant with the real sciences.' 

Nevertheless, in spite of its evident immaturity, un
necessary complication and over -exuberant claims, the 
work had some deeper significance and was part of a 
long-term project which occupied L eibniz off and on for 
many years. It is quite impossible to give an account of 
this project here. One of the basic ideas was that of an 
' alphabet of human thoughts '. These were indefinable 
concepts which he called ' first terms ', and from these 
are obtained derived concepts in much the same way as 
words are constructed from letters of an alphabet. He 
wrote of a series of classes ; the first class consisted of his 
' first terms ' ; the second class consisted of pairs of his 
' first terms ' ; the third . class of triples of his ' first 
terms ', and so on. The construction of classes in this 
way, although a trivial notion in itself, has an important 
initial role in many combinatorial processes. 

But the most imaginative and perhaps the most 
prophetic part of the dissertation is the fanciful range of 
applications to which Leibniz thought he could put his 
combinatorial art. It turns out that today, three hundred 
years later, combinatorics does occur naturally and in
escapably in a bewildering variety of contexts, many of 
them seemingly far removed from any sort of basic 
mathematical structure of a more traditional kind. These 
contexts, many of them related to the essentially dis
continuous nature of molecular and subatomic structures 
or discrete processes which arise naturally in many ways, 
are of course very different from those envisaged by 
Leibniz, but he seems to have had an instinctive feeling 
that the underlying principles of what he called his com
binatorial art would have significance in many very dis
similar fields. In this he was right. 

6 

III 

It is now time for me to attempt to give you some 
definition of the nature and range of the subject-matter 
of combinatorics. This is not altogether easy. In a very 
general way it is concerned with arrangements of objects, 
usually finite in number, into sets according to some pre
scribed restrictions or pattern. The objects themselves 
an~ th~ type of pattern and arrangement can be extremely 
vaned m character. Sometimes the restrictions are such 
that it is not immediately clear whether the required 
arrangement, sometimes also called a configuration or 
structure, can actually exist. 

To take a well known elementary example, suppose we 
~ave a chessboard with two squares removed, from oppo
site corners of the board. We are thus left with sixty two 
squares. We have thirty one rectangles, or dominoes, of 
such a size that each domino covers two squares of the 
chessboard. The combinatorial problem is to decide 
whether the board of sixty two squares can be covered by 
the thirty one dominoes. Only a moment's reflection is 
needed to see that such an arrangement of the dominoes 
is not possible, since the board has thirty two squares of 
one colour and thirty of the other, whereas the domino 
covering would require thirty one of each colour. It 
w~uld be pleasant, but perhaps rather dull, if every 
existence problem in combinatorics was as evident as 
this. 

When there is no doubt that a configuration does exist, 
the next combinatorial problem might be to find a 
construction, or an algorithm, to obtain it. Thus suppose 
we have a number of towns and a system of one-way roads 
such that it is possible to travel from any one of these towns 
to any other using the network of roads . One asks the 
question whether it is possible to traverse every road of the 
network once and only once in a single continuous circuit. 
Sufficient theory is known in connexion with this problem 
to tell us that such a circuit exists if and only if the number 
of roads of the network entering any town is the same as 
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the number of roads of the network leaving it. But when 
this condition is satisfied, as it usually is for road systems, 
it still remains to find an actual circuit. Trial and error 
methods with a pencil and a diagram of the network will 
soon produce a solution for a small number of towns, but 
for a general situation of a large number of intersection 
points of a directed network one needs a more systematic 
procedure ; such an algorithm has been devised for this 
particular problem. It enables a circuit of the kind 
required to be traced through the network without 
having to retrace one's path at any stage. 

In passing I should remark that the above problem of 
traversing each road once and once only is, for some 
peculiar reason, much easier than that of visiting each 
town in the network once and once only. In the latter 
case there is no known criterion to determine the existence 
of the required path. 

When a configuration has no problems as to existence 
or construction it may well be that what we require to 
know is the number of essentially distinct configurations 
or re-arrangements which are possible. Thus if the problem 
is to cover a chessboard with thirty two dominoes, where 
each domino covers two squares, it is not at all difficult 
to find several ways of doing this by mere trial and error, 
but it is not easy to determine how many different ways 
there are. In fact there are 12,988,816 ways. In case you 
think that this result was obtained by a mathematician 
with nothing better to do than fritter his time away on 
rather futile chessboard problems, I should mention 
that it was published in the Physical Review of 1961 as 
an example of an enumeration process of great interest in 
statistical mechanics. 

Another class of enumeration problem of interest to 
certain sorts of physicists is typified by the problem of 
non-self-intersecting random walks. One takes a general
ised chessboard ; that is, one with a sufficiently large 
number of rows and columns. A random walk from any 
prescribed square is a sequence of steps, one square at a 
time, taken either along a row or along a column with 
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equal probability in any of the four directions. The 
problem is to enumerate the number ofrandom walks ofn 
steps which do not cross themselves. It has received much 
attention from physicists and others but it remains un
solved. 

A broad class of problems in combinatorics is concerned 
with maximisation (or minimisation) of some numerical 
measure attached to an element or set of elements. The 
well-known problem of the travelling salesman is an 
example of this. Here we have a finite number of towns 
and we know the distance between any two of them. We 
are not concerned here with the nature of the network of 
roads connecting the towns, but merely with the distances. 
In effect what we have is a mileage chart such as appears 
in the handbooks of the motoring associations. The 
problem is to find the shortest route which will visit 
every town once only and then return to its starting point. 
A solution must exist since there is a finite number of 
routes visiting each town once only, and among these 
there will be one, or more, of minimum length. The 
construction of this shortest route is, however, a matter of 
great difficulty and a general algorithm is not known. An 
upper bound for the minimum number of steps in such 
an algorithm has been found, but this does not seem to be 
very helpful. 

Many of these extremisation problems can be related 
in one way or another to the ideas centring around the 
theory of flows in networks ; for instance the flow of traffic 
between a number of towns connected by a network of 
roads of known maximum capacities. There are often 
interesting results that the maximum measure of some 
set of elements is equal to the minimum measure of 
another set which is in some sense dual or comple
mentary to the first. There is quite a collection of these 
max-min theorems, and in this part of combinatorics 
there are signs of some basic unifying combinatorial 
theory. One of the most beautiful of these theorems is a 
celebrated result of R. P. Dilworth, published in 1950, 
from which as a very special example we can deduce the 
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rather astonishing, but possibly quite useless, result that 
in a set of mn+1 white mice (or any other creatures with 
similar breeding propensities) there is either a sequence 
of m + I mice each a descendant of the previous one in the 
sequence, or there is a subset of n + 1 mice no one of 
which is a descendant of another member of the subset. 

I am aware that I have not defined the nature and the 
extent of my subject very precisely, but I hope that by 
regarding it as the study of problems of existence, con
struction, enumeration and extremisation of configurations 
or arrangements possible under given restrictions or pre
scribed patterns, as instanced by the examples I have 
mentioned, you will have a good general understanding 
of its essentially discrete nature and its extremely wide 
range of applicability. 

Its problems are nearly always easy to propound, 
usually sufficiently so as to be intelligible to the man in 
the street, but their solutions, when they exist and are not 
trivial, can be excruciatingly difficult to obtain. Like the 
problems of arranging dominoes on chessboards which I 
have mentioned, they often seem far removed from any 
sort of practical utility to the extent of seeming entirely 
frivolous, but this is deceptive. Applications are very 
often near at hand. A short note of mine on a combin
atorial topic a few years ago turned out to have some 
relevance to the enumeration of certain genetical types 
and I had requests for offprints from research workers in 
animal science, zoology, entomology, psychology, endoc
rinology, mammalian genetics, communicable diseases, 
dairy and poultry science, animal husbandry, and health 
and welfare from various parts of the world, but rather 
strangely not from Great Britain. I must admit I was 
rather pleased with this show of interest, for although the 
traditional toast is 'to Pure Mathematics, may it never 
be of the slightest use to anyone ', and although I agree 
with the inner truth of this in that we study the subject 
to satisfy a compelling intellectual curiosity and not 
necessarily for any other reason whatsoever, I find it 
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pleasing when the intellectual pearls of the pure mathe
matician are found to fit into worthy settings in other 
sciences. 

IV 

In order to convey to you some of the peculiar flavour 
and fascination of combinatorics I would now like to 
relate the famous story of the thirty six officers. It con
cerns a conjecture which had to wait one hundred and 
seventy seven years for its resolution. I start the story not 
from the battlefield or the barrack square, but from the 
farmyard. Consider the problem of the farmer who 
wishes to compare the yields of four varieties A, B, C, D of 
wheat. A crude method of comparison would be for him 
to divide his field into four plots of equal area, each 
growing one variety of wheat. This would not be very 
satisfactory if the soil or growing conditions were of 
uneven quality in different parts of the field. There can 
be no certain way of eliminating such inequalities, but 
their effects are almost certainly diminished considerably 
if we grow each variety in four separate plots instead of 
one, the four plots being dispersed in different parts of 
the field. The design of such an experiment could be 
shown diagrammatically by a square 

B A D C 
D C B A 
C D A B 
A B C D 

in which each variety occurs once in each row and once 
in each column, thus diminishing the effects of any 
systematic variation of soil quality or other relevant 
conditions along the rows or along the columns. A 
square of this sort with the property that each symbol 
occurs once in each row and once in each column is 
known as a Latin square. 

Our farmer may have another problem on his mind. 
He has four fertilizers a, ~' y, 6 and he would like to test 
their relative effectiveness on his wheat crop. The 
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cunning way of doing this is to distribute ex,~' y, 6 among 
the sixteen plots so that each fertilizer appears once in 
each row and once in each column and further so that the 
sixteen pairs of seed and fertilizer are all different. One 
way in which this could be done is shown in the following 
diagram: 

By A6 Dex c~ 
D~ Cex B6 Ay 
C6 Dy A~ Bex 
Aex B~ Cy D6 

From the experiment designed in this way we can measure 
the relative effectiveness of ex, ~' y, 6 each acting on four 
plots containing the four varieties A, B, C, D, at the same 
time diminishing the effects of any variations over the 
field as a whole. 

For those who have no interest in this exercise in plant
breeding, I mention in passing that if we replace A, B, 
C, D by Ace, King, Queen, Jack, and ex,~' y, 6 by Clubs, 
Diamonds, Hearts, Spades, the above square gives a 
solution of the ancient problem of placing the sixteen 
court cards in a square array so that no row, no column 
and neither diagonal has more than one card from each 
suit and one of each rank. 

Let us now distil the mathematical essence of these 
exercises in wheat-growing and card-placing. What we 
have done is to superimpose a Latin square based on ex, 
~' y, 6 on a Latin square based on A, B, C, D so that the 
resulting pairs of one Greek and one Latin letter are all 
different. In general we have to superimpose an nxn 
Latin square on another nxn Latin square so that the n2 

pairs of elements are all different. We see from our 
example above that this can be done when n is four, but 
a question which arises in the mathematical mind is 
whether this can be done for every value of n. When n 
is two it cannot be done, since the only Latin squares 
we could superimpose would be 

A B ex ~ 
and 

B A ex 

12 

which give 
Aex B~ 
B~ Aex 

which has only two distinct pairs and not four as re
quired. 

When n is three, it is possible since 
A B C ex ~ y 
C A B and ~ y ex 
B C A y ex ~ 

are Latin squares which when superimposed give 
Aex B~ Cy 
c~ Ay Bex 
By Cex A~ 

which has the requisite nine distinct pairs. It is also 
possible when n is five, and I expect most non-mathe
maticians at this stage would be prepared to assume that 
when n is greater than two it will be possible, with some 
trial and error and perhaps a good deal of patience, to 
superimpose two nxn Latin squares so that the resulting 
n2 pairs of symbols are all different. 

This is where I must introduce the great Swiss mathe
matician Leonhard Euler, ( I 707-83), and his thirty six 
officers. In I 782, as a mathematical diversion, Euler 
considered the problem of arranging thirty six officers in 
a square array according to a particular pattern. There 
were six officers from each of six different regiments, and 
each officer had one of six different ranks. No two 
officers from any one regiment were of the same rank. 
The problem was to arrange them so that each row and 
each column contained exactly one officer of each regi
ment and one officer of each rank. This is nothing more 
than the problem of superimposing two 6x6 Latin squares 
to give thirty six different pairs of rank and regiment. If 
you dislike the military context you can turn the swords 
into ploughshares and we are back on the farm with a 
problem of six varieties of wheat and six fertilizers. 

The problem baffled Euler, which seems quite re
markable since he was a mathematician of very high 
order and was able to prove the powerful results that the 
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general problem of n2 officers of n different ranks from 
each of n different regiments could always be solved when 
n is an odd number or when n is a number divisible by 
four. He was unable to prove anything for the numbers 
outside these two categories, namely the numbers of the 
infinite arithmetical series 6, 10, 14, 18, 22, 26, ... , and 
in 1782 he made his famous conjecture that the problem 
of n2 officers had no solution when n had any of these 
values. 

In 1901 his conjecture was proved to be correct when 
n is six by an exhaustive listing of all 6x6 Latin squares 
and showing that no two of them when superimposed 
would give thirty six different pairs. The next case, when 
n is ten, was subjected to computer investigation in 1959, 
but the computer produced no solution after something 
like five days of running time and so it seemed as if the 
Euler conjecture was also true when n is ten. It is only 
fair to mention however that 1959 computers were much 
slower than those of today. But at about the same · time, 
1958-59, the conjecture was completely settled by means 
other than computer investigation. E.T. Parker, R.C . 
Bose, and S.S. Shrikhande actually constructed solutions, 
first when n is twenty two and then when n is ten, and 
crowned their work by establishing the existence of solu
tions for the whole infinite arithmetical series, 10, 14, 
18, 22, 26, . ... Thus Euler's conjecture of 1782 was proved 
to be correct when n is six in 1901, and incorrect for the 
other values of n in 1959. It seems strange, and indeed 
almost mystical, that apart from the rather trivial case 
when n is two, there should be just the one number, six, 
for which this problem has no solution. 

Problems concerning configurations of Latin squares 
and similar structures are by no means merely mathe
matical recreations. The ideas implicit in these problems 
form part of an important branch of combinatorial 
theory dealing with block designs and the design of 
experiments. Much work is currently in progress in this 
field. 

V 

If Euler's conjecture and its subsequent history show 
the fascination and unexpected solution of a combina
torial problem, my next topic shows above all else how 
exasperating a combinatorial conjecture can be. This is 
the notorious four-colour map conjecture. It seems to 
have arisen about 1850, when a certain graduate student, 
Francis Guthrie, in London, was drawing a map of 
England and observed that he needed only four colours to 
distinguish the counties in the customary geographical 
manner of giving each county a colour such that two 
counties with part of a boundary in common have different 
colours. In the general situation we have a finite plane 
area covered by a finite number of non-overlapping 
regions, no region consisting of two or more disconnected 
pieces. We wish to colour the regions so that two regions 
with a common boundary other than a single point have 
different colours . The conjecture, dating from about 
1853, is that four colours are sufficient for colouring any 
such map. Although the conjecture refers to a map on a 
plane, there is no essential difference between a map on a 
sphere and a map on a plane in this context. 

There is a two-colour map theorem which proves that 
if the surface of a sphere is divided into regions then the 
regions can be coloured with two colours in the way 
required if and only if the number of boundaries at each 
vertex, that is a meeting place of boundaries, is even. 

There is as yet no general criterion for deciding when 
a map can be coloured with three colours only, but there 
are some partial results. Thus if there are at least five 
regions on the sphere and each region has a common 
boundary with three others then three colours are 
sufficient. 

What was believed to be a proof that the four-colour 
conjecture holds was published in 1879, but eleven years 
later an error was found jn this proof. The number of 
incorrect proofs put forward since then must run into 
hundreds ; sometimes the flaw is fairly obvious, but 
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occasionally it is subtle and needs a careful unravelling 
of the proof to find it. One proof was demolished in a 
very recent issue of Mathematical Reviews. It is rumoured 
that another proof has recently been produced in the 
United States, but it has not yet been published and has 
not yet come through the very critical examination that 
any such proof must necessarily undergo. As this supposed 
proof has not yet been found to be correct beyond doubt, 
the situation is that the conjecture remains unresolved. 
It would be disproved if a map necessarily requiring five 
colours was discovered, but a direct search for such a 
conjecture-resolving map is not recommended. It was 
known in 1946 that such a map would need thirty six 
regions or more, and like everything else this number has 
gone up and is now at least forty . To test the immense 
number of topologically different maps with forty one 
regions to see if one of them cannot be coloured with four 
colours is an impossible task, with computers or without. 

The situation is particularly exasperating in two 
respects. Firstly, it has been known since 1890 that five 
colours are sufficient for any map on the plane or sphere. 
Secondly, conjectures analogous to the four-colour con
jecture for planar maps have been resolved for surfaces 
apparently much more complicated than the plane or 
sphere. For example seven colours are sufficient for any 
map on a torus, and six are sufficient for any map on 
the surface of a Klein bottle, which is a peculiar vessel, 
thought up by topologists, for which it is not possible .to 
distinguish the inside from the outside ; further, there 
are maps on these surfaces which require seven and six 
colours respectively. 

It is usual to deal with these map-colouring problems 
by taking a point within each region and, whenever two 
regions have a common boundary, joining the points 
corresponding to the two regions. In this way the map 
is replaced by a configuration of points and lines, and we 
have a combinatorial situation in which we have to colour 
the points so that the points at the end of each line have 
different colours. A configuration of points with lines 
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joining some or all of them is called a graph, and a good 
deal of combinatorial theory has grown up around graphs. 
It forms a major part of combinatorial theory. The four
colour map conjecture is transformable into several 
equivalent, and very interesting, conjectures in graph 
theory, but they all remain unresolved. There have been 
indications recently that some newer concepts rather 
more subtle than that of a graph may have relevance 
here, and they raise a wan hope that the conjecture may 
be resolved this century and mathematicians' minds put 
to rest on this problem. It is almost certain that the 
resolution of the conjecture will reveal some new and 
deeper results of graph theory in particular and of com
binatorial theory in general. The effect on cartography 
will probably be absolutely nil. 

VI 

I will conclude my lecture with some sober reflexions 
on Leibniz' vision of a combinatorial art of wide appli
cability. It is perhaps more realistic to think of the 
multiplicity of disciplines in which combinatorial problems 
arise and how far we seem to be from devising principles 
of some generality which will lead to their solution, rather 
than to presuppose the existence of a compact body of 
mathematical knowledge waiting to be discovered which 
has the answers to all combinatorial problems . Awkward 
combinatorial problems arise in molecular biology, 
genetics, statistical mechanics, network theory, opera
tional research, and mathematical economics, among 
many other sciences, and we certainly cannot solve all 
of them, nor in many of these have we as yet any general 
principles of combinatorial theory to apply to them. 
The problems are so varied that it is unlikely that they 
will all yield to just a few unifying general principles. 
Although accumulated knowledge is beginning to take 
systematised shape in some areas of combinatorial 
theory, for example, transversal theory, matroids, block 
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designs, network flow, certain kinds of enumeration, and 
graphs, much remains outside these areas in a state of 
outer darkness illuminated here and there by some flash 
of individual genius. There is much to be explored, and 
in many directions, before the greatest truths of com
binatorial theory are revealed. Those who seek to wrest 
these truths from the deep fastnesses in which they lie 
will need devilish ingenuity, craftiness, a good deal of 
patience, and probably genius of a rare kind. Perhaps 
one day we will be able to put the right questions in the 
right forms and get the right answers. In the meantime 
think kindly of the pure mathematicians, however 
useless, abstract, irrelevant, and new-fangled their lines 
of approach may appear. One of the lessons of scientific 
history is that what the pure mathematicians conjure 
from their intellectual flights of fancy quite often crystal
lises into tangible material of most unexpected usefulness 
and practical importance. 
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